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Summary. The quantum statistics of a symmetric hindered internal rotator in a 
molecule or molecular complex is developed within the Wigner function formal- 
ism. Different shapes of the rotational barrier are considered. The partition 
function and the thermodynamic functions are given as Wigner-Kirkwood series 
expansions in terms of  powers of Planck's constant squared. One gets simple 
closed expressions containing the modified Bessel functions J0 and -/1 of the 
argument iVo/2kT where V o is the barrier height. Some problems concerning the 
evaluation of equilibrium and rate constants of  chemical reactions are discussed. 
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1. Introduction 

The internal rotation of molecular groups (e.g. the methyl group) within 
molecules (e.g. ethane, polymers) or molecular complexes (e.g. C3H6OH2) has 
been a topic of interest for many years [1, 2]. Related motions are the rotation 
of molecules adsorbed on solid surfaces [3, 4] and the torsional oscillations of 
molecules or ions in the interior of molecular crystals [5, 6]. The contributions of 
the corresponding degrees of freedom to the thermodynamic functions and to the 
equilibrium and rate constants are, generally, important. In calculations in the 
frame of statistical thermodynamics these rotators were mostly treated as (classi- 
cal) free rotators [7] or sometimes as (harmonic) torsional oscillators [8]. 

However, the rotators have to be classified, in most cases, as hindered 
rotators or strongly anharmonic torsional oscillators, the more the lower the 
temperature is. There exists only a small number of papers on the quantum 
statistics of hindered rotators [9-13] whereas the literature on the quantum 
statistics of various types of  anharmonic oscillators is abundant [14, 15]. The 
reason is that the Schr6dinger equation for a hindered rotator is of the 
Mathieu-Hil l  type whose energy eigenvalues can be calculated only approxi- 
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mately. Therefore, the evaluation of the partition function and the thermody- 
namic functions is possible only with numerical methods; closed general formu- 
lae cannot be derived from this approach [9, 10]. 

There exists, however, another general method to do quantum mechanics and 
quantum statistics: the Wigner function formalism [ 16, 17]. In this formalism, all 
expectation values of quantum mechanical observables and the partition func- 
tion are calculated as phase space averages in analogy to classical statistical 
thermodynamics. The equivalent of the classical phase space distribution func- 
tion is the Wigner quasi-probability distribution function. Energy eigenvalues or 
eigenvalues of other operators are not at all needed. The Wigner function 
formalism operates, in principle, without any approximation and includes zero- 
point energy and tunneling automatically. It is, therefore, a very suitable tool for 
the quantum statistics of nontrivial systems and has found wide applications in 
many different areas of physics and physical chemistry, see e.g. [11-13, 18-20]. 

The main quantities characterizing a hindered rotator are the shape and the 
strength of the potential barrier. For a symmetric rotator, the hindering potential 
can be given by: 

v ( ~ )  1 = ~ v 0 ( 1  - c o s  n ~ )  ( 1 )  

where n is the symmetry number (e.g. n = 3 for the methyl group) or, more 
generally, by Fourier series [21]: 

( ) V(q~) ½V0 1 - ~ ak cos kn4 . (2) 

In the most simple case V(qS) is dominated by the repulsive interaction with a 
single near-neighbour atom within the molecule (or crystal) considered; then all 
coefficients ak for k ~> 2 are zero. The presumption is also that the cosine series 
converges rather rapidly. A reasonable representation of the barrier can then be 
made with the first two terms. For the important case of n = 3 one has: 

V(q~) = ½[V3(1 - cos 3~b) - V 6 cos 6q5]. (3) 

The effect of adding a small sixfold potential V6 cos 6q~ to the threefold main 
potential V3 cos 3~b is to broaden the potential wells at the expense of the 
barriers. (If V6 is negative then the wells are narrowed and the barriers 
broadened.) For many acetates and other molecules and complexes containing 
the methyl group we have V6 ~ V3 (e.g. V 6 / V 3  ~0.15 for acetates) [21]. 

The purpose of this paper is twofold: 

• To show the utility and flexibility of the Wigner function formalism by means 
of another example 

• To derive closed approximative expressions for the partition function and the 
thermodynamic functions for systems of (independent) symmetric hindered 
quantum rotators and to discuss their influence on the evaluation of equilibrium 
and rate constants. 

The rest of the paper is organized as follows: In Sect. 2 we explain the Wigner 
function formalism and derive formulae for the partition function by means of 
the Wigner-Kirkwood series expansion in terms of even powers of Planck's 
constant. Section 3 contains the evaluation of the thermodynamic functions free 
energy, internal energy, entropy, and heat capacity. In Sect. 4 some problems 
concerning the statistical evaluation of chemical equilibrium and rate constants 
are discussed. 
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2. Wigner function formalism for the partition function of a hindered rotator 

The starting point of the Wigner function formalism is the state space equivalent 
(the so-called Wigner equivalent.) A w(p, q) of any quantum operator (observ- 
able) A(fi, Q). If the operator A is given in the coordinate representation by 
-~(q, q) = (q I -~ Iq') then its Wigner equivalent is defined by means of the Wigner 
transformation as: f ( z  

A w ( p , q ) =  dze ipz/h q - - ~ l A I q +  . (4) 

The Wigner function fw(P,  q) is essentially the Wigner equivalent of the density 
operator 0 and is given as: 

f w ( p , q ) - ( 2  )f dze ipz/h q - 5 [ O I q +  . (5) 

Herefdenotes the number of degrees of freedom of the system considered, p, q, z 
are corresponding vectors with f components, pz means the scalar product (in an 
Euclidean space), and ~ dz is an f-fold integral. For a single rotator with a fixed 
axis one has f = 1. 

A key result of the Wigner approach is the formula for the expectation value 
( .4) of any operator A in terms of a phase space integral [16, 17]" 

(A  ) = Tr(OA') = .f_f dp dqfw(p, q)Aw(p, q). (6) 

This expression looks like a corresponding formula in the classical phase space 
statistics. The Wigner function fw(P,  q) is, however, generally not a proper 
probability distribution and may become locally negative which is clearly a 
consequence of the Heisenberg uncertainty relations. 

In equilibrium statistical thermodynamics the most important quantity is the 
partition function: 

^ 

Z(T, V) = Tr e -Bu = ~ e -~E, (7) 
n 

where/4 is the Hamiltonian of the system considered, E~ are its eigenvalues, and 
fl = 1/kT. Now we introduce the Boltzmann operator f2 and its Wigner equiva- 
lent f2 w: 

= e-~i~, Ow = (e-Pg')w. (8) 

Then the partition function is given as: 

Z = [[dp dqf2w(p, q; fi). 

The Bloch equation for the evaluation of O reads: 

where [ . ,  .]+ denotes the anticommutator. The Wigner equivalent of Eq. (8) 
becomes [16]: 

Off - -  Hwcos  A f2 w (9) 
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with the Poisson bracket operator or symplectic differential operator: 

A 0pSq 8q8/)' (10) 

For a system with one degree of freedom and a Hamiltonian: 
^ ^ p2 

H(P, Q) ~ Hw(p ,  q) =~m + V(q) (11) 

where V(q) is potential energy the Bloch equation reads explicitly: 

8~2w_ [ = = | / h 2  8 2 \  ~,2[h 8 8,,~V(q)f2w (12) 

here 8'/8q operates only on V(q) and not on f2w. 
The solution of Eq. (12) can be represented by the famous Wigner-Kirk- 

wood series, an expansion in powers of h 2. With Eq. (7) this series reads for the 
partition function: 

ff Z = ~ h  dp dq e--fl(p2/2m -? V(q)) h2n@ n (13) n=O 
with q~0 = 1, and the terms q), giving the quantum corrections to the classical 
partition function are to be calculated recursively according to: 

50, { 2 cl),(p, q; fl) = -- dfl' e I~'V (~n 1 e - f l ' v )  
8m 8q 2 - 

n~l(--1)n+k--l( ~P(~q) k) } 
-~ efl'p2/2rn k= 0 V e-Kp2/2m~ k . (14) 

After integration over the momentum p, we get the partition function as: { ,2E , ? 
Z = ~  dqe ~v l + h 2 1 ~ m  _~5(V,)2 

//4 5 "3c~42~m2[--Vnn-~ j~(2VtVmq-~Vn2)- l~ ~2V'2Vn-'}-'~ //3V'41 

-~- O(h6) -J-'" "t (15) 

where V' = 8V/Sq and so forth. The advantage of this series expansion is that it 
gives the partition function as classical partition function plus quantum correc- 
tions Z(h 2): 

Z = Zc, + Z ( h  2) + Z ( h  4) + " ' .  (16) 

Because of the factors //2, f14,.. ,  this expansion converges rapidly for not too 
low temperatures [22, 23]. 

For a hindered rotator with a simple cosine potential the canonically 
conjugate coordinates are given by the rotation angle (b and the angular 
momentum L, respectively; and the mass is to be replaced by the moment of 
inertia L The potential energy (hindering potential) V(~b) is in the most simple 
case specified as (cf. Eq. (1)) 

V(qS) = ½V0(1 -- cos nqS). (17) 
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In order to have a convenient comparison with the limiting case of a harmonic 
oscillator (Vo~ oe) we introduce the angular frequency ~0 of the harmonically 
oscillating torsional vibrator by: 

co = n. (18)  

With Eq. (17) the classical partition function is written as: 

Z c t - ~ e  -x  e . . . . .  +d0 (19) 
hn 

where x = fiVo/2. We get the well-known expression: 

Zcl = Z f e  -x  Io(x) (20) 

where 

2~c (21) 
Zu h n 

is the classical partition function of a free internal rotator of symmetry number 
n, and: 

,fo Io(x) = Yo(ix) = ~ e . . . . .  * dO (22) 

is the modified Bessel function Io(x) (or the Bessel function Jo(ix) of the purely 
imaginary argument ix) of order zero [24]. 

The evaluation of the quantum corrections Z(h 2) and Z(h 4) yields with 
u =/~hco 

Z(h 2 ) = Z  I e - x ~  e . . . . .  ~ _ cos n 0 + ~ x s i n  2n0 dO, (23) 

Z(h 4) = Z i e -x ~ e . . . . .  4 2-/6 x cos nO - 2 sin 2 n0 

3 a 11 5 ) 
+ ~ cos n0 -- ~- x sin 2 nO cos nO + x 2 sin 4 nO d0. (24) 

All integrals in Eqs. (23) and (24) can be expressed by Bessel functions Jr(z) of 
purely imaginary argument z = ix, where v is a positive integer index [24]: 

i vf02~ Jv(iX) = ~ e i . . . . .  e cos vnO dO (25) 

or by the modified Bessel functions: 

I~(x) = i vJ~(ix). (26) 

One gets: 

Z(h 2) = - Z T  e -x  1 f12(ho~)211 (x), (27) 
24 

Z(h4)=-I-Zfe-~2~'4(hc°)4{-lll(X)-F~El°(x)-lll(X)lx x 

11 5 } 
- -  ~ - ~  x [ I ~ ( x )  - -  h ( x ) ]  + g h ( x )  • (28)  
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By means of the recursive relations [24]: 

/~ - 1 (x) - / ~  +l (x) = 2vlv(x)/x (29) 

we have finally the total partition function as a compact expression: 

Z =  Z fe -XIo (x ) {1  fl2(hc°)2 Is(x) fl4(h(D)4 (7 2 Ii(x)']~ 
24 Io(x) + 5760 x I o ( ~ J J  " (30) 

The factor in curly brackets represents the quantum correction to the classical 
partition of function of Eq. (20). 

In the case of a modulated cosine potential given by: 

V(~b) = ½V0( l - cos nq~ - 5 cos 2n~b) (31) 

where 5 ~ 0.1 for most molecules or molecular complexes, at first we calculate 
the classical partition function written in the shape: 

Z c t = Z  z e  x__2~z e . . . . .  e l + v = i ~ c o s  v2n~b dqS. (32) 

With [24]: 

1_2 ~'~1( 2/* 1) 
cos2V 1 2n~b = 22,u k_~o ? COS(2/~ -- 2k - 1)2n~b, (33) 

cos 2" 2n~b = 22 ~ 2 cos 2(/t - k)2nO + (34) 

one gets for Zcl a series expansion in terms of Bessel functions I2(2u - 2e - l)(x) and 
I4(~_k)(x), respectively. Clearly this series converges rather rapidly, and in 
practice one needs only terms up to the order 5 or  5 2. Therefore we use the 
approximation: 

Zd = Zf  e -x  __ e . . . . .  ¢, 1 + 5x cos 2nq5 + e 2 ~- cos 2 2nq5 dq5 (35) 
2~ 

and get, by use of (25), after elementary transformations 

I2(x) ,e2 1 (36) Z = Z f e - X I° ( x ) 1-t- sx I - ~  + -4 + I - ~  ) J " 

Comparing this expression with the classical partition function of Eq. (20) 
without the potential proportional to g cos 2n~b, we identify the factor in square 
brackets in Eq. (36) as the potential modulation correction factor in Zd. With 
the help of the recursive relations of Eq. (29) it is again possible to express the 
whole correction factor in terms of the Bessel functions Io(x ) and /i(x) only: 

Zc,= Zf  e-Xlo(x) [ l  + ~x ( 1-21'']xl-o] 

X2{( 12) 11 4 (  6~ I,~] 
-~2 T 1+7~ g-Tc 1-x2/loj_j. 

The full partition function is given by Eq. (16). We content ourselves with 
the first quantum correction Z(h 2) and write: 

Z ( h 2 ) = Z f e  - ~ 1  e . . . . .  ¢ ' [ I+eAI+g2A2]I-~-  I - V " + ~ V  "2 dO (37) 
2re 
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where 

Aa = x cos 2nq~, 

X 2 X 2 
A2 = ~-  cos 2 2nq~ = -~- ( 1 + cos 4nq~), (38) 

V' = ½V0(n sin n~b + ~2n sin 2nq~), 

V" = ½Vo(n 2 cos n~b + ~4n 2 cos 2n40. (39) 

After somewhat lengthy calculations using elementary formulae for trigonomet- 
ric functions of  multiple arcs and Eqs. (25), (26), one ends with: 

Z(h 2) = (hc°)2fi2Zre-X{Ii(x) +ex(3Ii(x) +/3(x))  - e 2 a }  (40) 
24 

with 

a = x(6/o (x) -- 3I 1 (x) + 4I 2 (x) - I 3 (x) - 2/4 (x)) + x 2 ( I  3 ( x )  - [ 5 (X)). 

This quantum correction again contains terms proportional to g and ,~2 due to 
the potential modulation. From now on we neglect the term 82a. 

3. Thermodynamic functions 

All thermodynamic functions for a system of hindered rotators without mutual 
interaction follow from the partition functions (30), and Eqs. (36) together 
with (40), respectively, by use of well-known formulae [13]. We derive the 
(Helmholtz) free energy F, the internal energy U, the entropy S, and the heat 
capacity C for one mole of rotators: 

F= - R T  In Z, 

U = RT 2 ~ In Z, 
l Y l  

(41) 
S= R ( l n Z  + T - ~  I n Z ) ,  

For  the thermodynamic functions we restrict ourselves to the first quantmn 
corrections and give again all thermodynamic functions as a sum of  the classi- 
cal contribution and the quantum correction, using the approximation 
ln( 1 + x) = x - x 2/2. 

For  the simple hindered rotator we first get the free energy: 

F = Fc~ + g(h 2) (42) 

where 

F~ 1 = - -RT In Zf - RT(ln Io(x) - x) (43) 

is the free energy of the semiclassical approximation [56], and: 

F(h 2) = RT (hcg)2fi2 I~ (x) (44) 
24 Io(x) " 
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(Notice that fi = 1/kT, x = Vo/2kT). The internal energy U (that means, for the 
set of rotators, the enthalpy H likewise) is given by: 

U = U~, + U(h 2) (45) 

with 

vc, = ½Rr  + R r x  (1 _ I , (x) '~  
Io(x) } ' 

R - (h~)2/~: r''(~) ( , -  ('/l (x) /2)l U(h2) = 
~ ~  [/o-7~ +'< t, So(X)) )_1 

The entropy becomes: 

with 

S = Set + S(h 2) 

z, (x) -I 
So, =R(lnZf+½) + R  lnlo(x ) - x / o - ~ ] ,  

2 ~ x  1 \ I o ( x ) ] J "  

Finally, the molar heat capacity is given by: 

with 

(46) 

(47) 

(48) 

(49) 

(50) 

1 --f I1(X) X 2 [ -  (I1 (X)'~2]"~t/0-~) JJ' Cd=2R-R l x / o ~  - 1 (52) 

(hi2)) 2]~ 2 {3 - /11 (x)'~2 2II(X)[--(II(X)~2"]'~ (53) 
C ( h Z ) = - R  2 ~ x  t / o ~  ) - X/o- ~ 1 \Io(x)/t J J  

Let us now consider the hindered rotator with the modulated cosine poten- 
tiM. First we write the full partition function according to Eqs. (36) and (40): 

Z = Zd  + Z(h 2) 

Iz(x) e2 1 + 
= Zf  e Xlo(x) 1 + ex I ~  + 4 Io(x)J A 

- Z z e-XIo(x ) 24 LIo(x) + ex I ~  + Io(x)]J  

= Zze-Xg°(x) [ I + B' (hg°)2f1202124 (54) 

where B l , B2 are temporary abbreviations (notice that Io(x) >~ 1, x = flVo/2 ). The 
free energy now becomes: 

B 2 - 2  B~ B, B2 . (55) F = - - R T l n ( Z f e - X l o ) - R T  B~ 24 12 

Here again we take the quantum corrections up to terms in h 2 and consider the 
potential modulation correction up to terms in e 2 in the semiclassical contribu- 

C = C~, + C(h 2) (51) 
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tions and up to terms in e within the quantum correction. With these approxima- 
tions we get finally: 

F = - R T  In Z / -  RT(ln Io(x) - x)  

r /4(x) (l,(x)'~2"~] 
1 + / o ~ - - 2 \ / o ~  / ]J 

(2~0))2 FII (X) (3 II (X) 13(X)I,(x)I2(x).'~] + R T  fi2 + ex 4 . (56) 
Uo(X) \ 2  io(x  ) io(x  ) i~(x)  ]] 

The last line in this expression represents the quantum correction. The somewhat 
lengthy formulae for the other thermodynamic functions follow in the known 
way. 

4. Discussion: hindered rotators and equilibrium and rate constants 

Numerous papers are concerned with the quantum statistics and thermodynam- 
ics of free rotating molecules or free rotators within molecules, e.g. polymer 
molecules, see [7, 25, 26]. In his study on free internal rotation in molecular 
complexes Slanina [7] points out that in all probability there is no system having 
a zero barrier height. In this paper we succeed in formulating a complete 
quantum statistical theory of realistic hindered rotators from first principles, i.e. 
by use of the phase space formalism (Wigner formalism) of quantum statistics. 
We obtain relatively simple formulas for the partition function and the most 
important thermodynamic functions. 

A basic question is to what extent it is possible to separate the hindered 
rotation of an internal rotator from the other degrees of freedom of a molecule. 
This question is of particular interest in the case of van der Waals or hydrogen- 
bonded molecular complexes or other floppy molecular systems. It was shown 
[27] that even in extremely floppy complexes with wide amplitude vibrational or 
torsional motion the quantum term values are very well fit by a rigid or semirigid 
rotator Hamiltonian, at least for a limited range of not too high temperatures. 
Therefore we expect our approach to give reliable contributions of internal 
rotators to the partition function and the thermodynamic functions of molecules 
and molecular complexes. 

In many cases, in particular for the statistical calculation of equilibrium 
constants and rate constants of chemical reactions it is convenient to write down 
the thermodynamic functions without the contributions of the zero point energy 
(ground state energy E0) of the molecular system considered. In that case it is 
sufficient to simply subtract this energy from the full expressions for the free 
energy F and the internal energy U. (The entropy S and the heat capacity C are 
independent from E0). The zero point energy may be calculated within the 
Wigner formalism for the quantum mechanics (at T - - 0  K) or by use of 
perturbation theory for a corresponding quantum mechanical anharmonic oscil- 
lator [ 111. 

The formulae for the partition functions derived above possibly without 
the terms containing the zero-point e n e r g y -  directly yield the contributions of 
the internal rotators to the equilibrium constant of any homogeneous chemical 
reaction. As is well known [13] this equilibrium constant is given by the product 
or ratios of the total partition functions of the molecular systems involved. In 
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particular, in the important case of  an isotopic exchange reaction the equilibrium 
constant is directly determined by the partition function ratio of  the isotopic 
molecules considered. 

Likewise the partition functions including that of an activated complex enter 
the formulae for the evaluation of rate constants of chemical reactions in the 
frame of the Eyring theory of absolute reaction rates. Again the isotopic effects 
in the kinetics of  homogeneous chemical reactions are directly given by the 
corresponding partition function ratios [13]. 

The accuracy of the expressions for the partition function and the thermody- 
namic functions can be discussed by comparison with the tables of Pitzer and 
Gwinn [9] and Li and Pitzer [10], cf. [11, 13]. We conclude that for the most part 
of molecules and molecular complexes and in particular for the most interesting 
range of temperatures T = 300 - • • 700 K our formulae have a completely suffi- 
cient accuracy of fractions of one per cent. Therefore, the contributions of 
hindered rotators to equilibrium and rate constants of chemical reactions includ- 
ing isotopic exchange reactions and isotopic kinetic effects can be calculated with 
a high reliability. 

Our reasoning is found on Boltzmann quantum statistics. Slanina [7] remarks 
that at low temperatures Fermi-Dirac  or Bose-Einstein statistics should be 
used. This remark certainly is incorrect because the molecules or molecular 
complexes carrying the rotators (e.g. CH3) are localizable and thus distinguish- 
able in the gaseous, liquid or solid state (their masses are high enough). The 
situation is here the same as in the case of  nuclear magnetic resonance where 
spins - though being typical quantum objects - are nevertheless correctly treated 
with Boltzmann statistics. 
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